A slow-down time-transformed symplectic integrator for solving the few-body problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولForward Symplectic Integrators for Solving Gravitational Few-Body Problems
We introduce a class of fourth order symplectic algorithms that are ideal for doing long time integration of gravitational few-body problems. These algorithms have only positive time steps, but require computing the force gradient in additional to the force. We demonstrate the efficiency of these Forward Symplectic Integrators by solving the circularly restricted three-body problem in the space...
متن کاملAn Efficient Conservative Integrator with a Chain Regularization for the Few-body Problem
We design an efficient orbital integration scheme for the general N-body problem that preserves all the conserved quantities except the angular momentum. This scheme is based on the chain concept and is regarded as an extension of a d’Alembert-type scheme for constrained Hamiltonian systems. It also coincides with the discretetime general three-body problem for particle number N = 3. Although t...
متن کاملFew-body Systems the Few-body Coulombian Problem
Recent advances in the treatment of scattering of charged composite particles are reviewed. In a rst part I report on developments of the theory. Speciically I describe the recent completion of the derivation of the coordinate space asymptotic behaviour of the wave function for three charged particles in the continuum. This knowledge is increasingly being made use of in attempts tòderive' three...
متن کاملA Symplectic Integrator for Riemannian Manifolds l
There exist a number of mechanical systems having configuration and phase spaces that are differentiable manifolds which are not open subsets of Euclidean space. The spherical pendulum, which has configuration space the 2-sphere, and a single rigid body, with configuration space the Lie group SO(3), are two common examples. Integration algorithms, on the other hand, are usually set in the Eucli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2020
ISSN: 0035-8711,1365-2966
DOI: 10.1093/mnras/staa480